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ABSTRACT
Background In recent decades, spatial epidemiology 
has increasingly been used to study neglected tropical 
diseases (NTDs). Spatial methods are particularly relevant 
when transmission is strongly driven by sociodemographic 
and environmental factors, resulting in heterogeneous 
disease distribution. We use lymphatic filariasis (LF)—an 
NTD targeted for global elimination—as a case study 
to examine how spatial epidemiology has been used to 
enhance NTD surveillance.
Methods We conducted a systematic literature review of 
spatial analytical studies of LF published in English across 
PubMed, Embase, Web of Science and Scopus databases, 
before 15 November 2022. Additional papers were 
identified from experts’ suggestions. Studies that employed 
spatial analytical methods were included, but those that 
applied only visualisation tools were excluded.
Findings Sixty- one eligible studies published between 
1997 and 2023 were identified. The studies used a wide 
range of spatial methods. Thirty- one (50.8%) studies 
used spatial statistical modelling, with model- based 
geostatistics being the most common method. Spatial 
autocorrelation and hotspot analysis were applied in 30 
studies (49.2%). The most frequent model outputs were 
prevalence maps (17 studies, 27.9%), followed by risk 
maps based on environmental suitability (7 studies, 11.5%) 
and maps of the odds of seroprevalence being above a 
predetermined threshold (7 studies, 11.5%).
Interpretation By demonstrating the applicability of 
spatial methods for investigating transmission drivers, 
identifying clusters and predicting hotspots, we highlight 
innovative ways in which spatial epidemiology has 
provided valuable evidence to support LF elimination. 
Spatial analysis is particularly useful in low- prevalence 
settings for improving hotspot detection and enhancing 
postelimination surveillance.
PROSPERO registration number CRD42022333804.

BACKGROUND
Elimination, control and prevention of 
neglected tropical diseases (NTDs) are key 

priorities in global health.1 Spatial epidemi-
ology can be used to combine technologies 
such as geographic information systems, 
global position systems and remote sensing 
with geospatial statistical methods to identify 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ In countries where neglected tropical diseases 
(NTDs), such as lymphatic filariasis (LF), are endem-
ic, control and elimination programmes have been 
implemented, aiming to interrupt transmission and 
alleviate suffering.

 ⇒ As these interventions take effect, the decrease in 
disease prevalence is characteristically associated 
with increased clustering, making it difficult to iden-
tify residual pockets of infection.

WHAT THIS STUDY ADDS
 ⇒ In this systematic review, we demonstrated that 
spatial epidemiology has contributed to a better un-
derstanding of the LF burden and distribution and 
contributed to enhanced informed decision- making 
for elimination strategies.

 ⇒ Here, we highlight innovative ways in which spatial 
epidemiology has provided valuable evidence to 
support LF elimination.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ Spatial epidemiology approaches may be particu-
larly useful in low- prevalence areas and postelim-
ination settings where hotspot detection can help 
enhance surveillance strategies.

 ⇒ The valuable insights of these approaches into oper-
ational decision- making for LF elimination could be 
also adapted in the efforts against other NTDs.

 ⇒ The small number of studies that met our inclusion 
criteria and the variety of methods adopted by these 
studies limits the power to provide standard recom-
mendations for the implementation of spatial anal-
ysis for LF.
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areas of high disease prevalence, analyse risk factors and 
drivers of transmission and predict prevalence across 
regions based on multiple sources of data.2 As a result, 
public health policymakers have greater access to tools 
that can improve surveillance, facilitate the implemen-
tation of targeted public health interventions and help 
with monitoring and evaluation.3

Spatial epidemiology can be particularly beneficial for 
diseases that are strongly driven by sociodemographic 
and environmental factors, leading to heterogeneous 
distribution. In recent decades, significant progress 
towards control and elimination of NTDs has been 
made due to the identification of high- prevalence areas 
and the implementation of mass drug administration 
(MDA) and other strategies based on WHO guidelines.1 
The reduction in prevalence can be associated with an 
increase in spatial heterogeneity of remaining infec-
tions, meaning that transmission is concentrated in focal 
geographic areas or subpopulations, and potentially 
more difficult to identify.4 5 The challenge of identifying 
areas of ongoing transmission could cause setbacks for 
elimination programmes. Acknowledging this risk, the 
2030 WHO roadmap for NTDs emphasises the impor-
tance of strengthening post- MDA and postvalidation 
surveillance.1

Here, we use lymphatic filariasis (LF) as an example 
of how spatial epidemiology can be used to better 
identify and monitor areas of high risk of transmission 
compared with traditional, non- spatial methods. LF is 
an NTD caused by the mosquitoborne filarial nema-
todes Wuchereria bancrofti, Brugia malayi and Brugia 
timori. Infection can cause damage to the lymphatic 
system, resulting in chronic pain, progressive lymphoe-
dema and permanent disability.6 7 Despite the substan-
tial achievements of the WHO Global Programme to 
Eliminate LF (launched in 2000), LF remains endemic 
in 44 countries in 2023, with 882 million people at risk 
of infection.6

This systematic review aimed to investigate the diverse 
range of spatial analytical methods employed to investi-
gate LF epidemiology and improve our understanding of 
transmission dynamics to optimise the success of elimina-
tion programmes. Thus, the objectives of this systematic 
review were to describe and compare spatial analytical 
methods that have been used to examine the geographic 
distribution of LF, identify risk factors driving geograph-
ical distribution and assess the impact of elimination and 
control programmes.

METHODS
Study design
The design of this systematic review followed the 
Preferred Reporting Items for Systematic Reviews and 
Meta- Analyses protocol.8 The protocol for this study was 
registered with the international prospective register of 
systematic reviews (PROSPERO CRD42022333804).

Data source and search strategy
A search was conducted on PubMed, Embase, Web of 
Science and Scopus databases on 15 November 2022 
using a combination of keywords and medical subject 
headings associated with two main topics: LF and spatial 
epidemiology. The search strategy for each database is 
shown in online supplemental appendix 1. Additional 
papers were identified through hand searching the bibli-
ographies of retrieved articles and from suggestions from 
experts.

Eligibility, and inclusion and exclusion criteria
This systematic review included peer- reviewed studies 
that applied spatial methods to describe the distribu-
tion of human cases of LF and/or to identify the deter-
minants of higher infection prevalence in geographic 
regions. Studies were also included if spatial methods 
were used to assess the impact of interventions such as 
MDA. Studies were included if they reported human 
cases of LF diagnosed clinically (presence of lymphoe-
dema or elephantiasis of limbs, and/or hydrocele) or 
using laboratory diagnostic tests.

Although mapping is part of the spatial epidemiology 
framework, studies that only included a graphical repre-
sentation, without any spatial analyses, were excluded. 
Only studies published in English were included. There 
was no restriction to geographical regions of reported 
cases and year of publication. Studies that only included 
mosquito monitoring were excluded. Studies that 
reported other causes of lymphoedema were excluded.

Screening and selection were conducted using COVI-
DENCE (Veritas Health Innovation, Melbourne, Victoria, 
Australia).9 After the exclusion of duplicates, two 
researchers (BMM and ACR) independently screened 
the titles and abstracts to identify potentially eligible 
studies. The full text of the records identified from initial 
screening were then screened by the same two researchers 
to determine if the inclusion criteria were met, and any 
disagreements were resolved by an independent third 
reviewer (HJM).

Data extraction and synthesis
Three researchers (BMM, ACR and HJM) independently 
performed data extraction using pretested data extrac-
tion forms in Microsoft Excel (Microsoft, Redmond, 
Washington, USA). Disagreements were resolved 
by consensus. Data extracted from each publication 
included study characteristics (year of publication, 
location), LF context (vector and pathogen species, 
and occurrence of MDA), study design (data source, 
sampling design, diagnostic test, spatial scale), study aims 
and spatial methods and outputs. Table 1 summarises 
the data extracted from publications, and a description 
of data extraction methods can be found on the online 
supplemental appendix 1.

In this study, the term hotspots was used to describe 
high- risk areas or locations with significantly higher levels 
of infection compared with the surrounding area. Hotspot 
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analysis is considered a subtype of spatial dependence or 
autocorrelation methods, in which the location of the 
high- risk areas is identified.

Risk of bias and quality assessment
The risk of bias and quality assessment was conducted 
using the risk of bias in systematic reviews (ROBIS) 
tool.10 As the aim of the systematic review was to identify 
methodological approaches used in the spatial analysis 
of LF, the individual assessment of risk of bias would not 
impact our results.

Role of the funding source
This study did not received any specific funding.

Patient and public involvement statement
It was not appropriate or possible to involve patients or 
the public in the design, or conduct, or reporting, or 
dissemination plans of our research.

RESULTS
Study characteristics
The initial search identified 3096 records; after excluding 
duplicates, 1618 papers were retained. Title and abstract 
screening excluded 1436, and the 182 remaining papers 
went through full- text review, of which 129 were excluded 
for not meeting inclusion criteria. Seven papers were 
suggested by experts and/or through hand- searching the 
bibliographies of retrieved articles, resulting in 61 papers 
being included (figure 1). The full collection of papers 
included in this systematic review can be found in online 
supplemental appendix table 1.

Included studies were published between 1997 
and 2023. Although our initial search was finalised in 
November 2022, an additional paper published in early 
2023 was included because it met the inclusion criteria. 
Figure 2 shows a timeline of years of publication of 
the studies, with an increasing trend in the number of 
papers during the study period. When comparing spatial 
methods categories, spatial statistical modelling and spatial 
dependence analysis approaches were implemented more 
constantly than other spatial methods and spatial math-
ematical modelling has been used in more recent years. 
However, no clear trend on spatial methods adopted 
through the years could be observed due to the small 
sample size (online supplemental appendix figure 1).

Except for the WHO European region (where LF is not 
endemic) and the Eastern Mediterranean region, where 
two (Egypt and Yemen) of the three LF- endemic coun-
tries have been validated as having eliminated the infec-
tion as a public health problem,7 all other WHO regions 
were represented in this study. Three studies (4.9%) 
analysed data at the global level, 8 (13.1%) analysed data 
from multiple countries in Africa and 50 studies (82.0%) 
were conducted at national or subnational levels. Among 
the studies reporting national and subnational data, 16 
(26.2%) analysed data from Africa, 15 (24.6%) from 
South- East Asia, 12 (19.7%) from the Western Pacific 

Table 1 Summary of the data extracted from each paper 
reporting spatial methodological approaches to analyse LF 
included in the systematic review

Data extracted Categories

Study characteristics

  Year of 
publication 1997–2023

  Location
Country
WHO region

LF context

  Vector species

Aedes sp
Anopheles sp
Culex sp
Mansonia sp
Multiple species

  Pathogens 
species

Wuchereria bancrofti
Brugia sp
Multiple species

  Previous rounds 
of MDA

1–5 rounds
6–10 rounds over 10 rounds

Surveys design

  Data source

Survey (community or school- based)
Secondary data (filariasis report, data previously 
published)

  Sampling design

Systematic sampling
Randomised sampling
Convenience sampling
Mass screening
Multiple stage sampling
Combined sampling design

  Diagnostic test

CFA (ICT, FTS, Og4C3)
Antibodies (IgG4, Bm33, Bm14, BmR1, Wb123)
Parasitological (microfilariae)
Clinical

  Spatial scale

National level
Districts or regions
Villages or communities
Household or individual level

Study aims

  Aims

Describe geographical distribution of prevalence
Identify spatial autocorrelation
Identify high- risk areas or hotspots
Identify explanatory factors
Analyse the impact of interventions
Model transmission or elimination accounting for 
spatial dependence
Demonstrate and compare spatial methods for LF

Spatial methods and outputs

  Methods*

Spatial dependence analysis
Smoothing and interpolation
Spatial statistical modelling
Spatial mathematical modelling

  Outputs

Identification of spatial dependence
Identification of high- risk areas or hotspots
Identification of explanatory risk factors
Predicted locations of hotspots
Predicted prevalence or created a prevalence map
Predicted probability of occurrence of LF
Predicted environmental suitability
Predicted transmission
Assessed the odds of elimination

*The specific tools and techniques adopted by each study are detailed in the 
‘Results’ section.
CFA, circulating filarial antigens; FTS, Alere Filariasis Test Strip; ICT, 
immunochromatographic test; LF, lymphatic filariasis; MDA, mass drug 
administration.
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region and 9 (14.8%) from the Americas. India was the 
country with the highest number of studies (six, 9.7%) 
followed by American Samoa, Haiti and Indonesia, with 

five (8.1%) studies each. Online supplemental appendix 
table 2 shows the global distribution of the studies 
included in this systematic review.

Figure 1 Preferred Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA) flow chart showing search and 
selection of studies procedure.

Figure 2 Number of studies that reported spatial methodological approaches to analyse lymphatic filariasis by year, for the 
period between 1997 and 2023. The red line shows the trend over the period.
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Lymphatic filariasis context
Among the 43 papers (70.5%) that reported on vector 
genera, Anopheles was reported in 15 studies (34.9%), 
Culex sp in 10 studies (23.3%), Aedes sp in 8 (18.6%), 
Mansonia sp in 1 (2.3%) and multiple vector species in 
9 studies (20.9%). Pathogen species were reported in 45 
studies (73.8%); W. bancrofti in 38 studies (84.5%), Brugia 
sp in 2 studies (4.5%) and co- circulation of both species 
in 5 studies (11.1%).

Regarding the occurrence of MDA, 23 studies (37.7%) 
analysed data before the intervention, 21 (34.4%) anal-
ysed data from a post- MDA period and 2 (3.3%) papers 
compared data from both periods. Among the studies 
that included data from the post- MDA period, 6 (26.1%) 
reported 1–5 MDA rounds, 14 studies (60.9%) from 6 
to 10 and 1 study (4.3%) over 10 rounds. Two studies 
that reported data after MDA were not clear about the 
number of rounds implemented before data collection.

Survey design
Diagnostic test
LF diagnosis was determined by the detection of micro-
filariae in a blood smear in 38 studies (62.3%), by the 
detection of antigen in blood or urine samples in 38 
studies (62.3%), and by the detection of antibodies in 7 
studies (11.5%). Among the studies that reported antigen 
results, ICT was adopted in 26 studies (68.4%), FTS in 12 
studies (31.6%) and Og4C3 in 5 studies (13.2%). Among 
the studies that reported in antibodies results, IgG4 anti-
bodies were reported in four studies (57.1%), anti- Wb123 
in six studies (85.7%), anti- Bm14 in five studies (71.4%) 
and anti- Bm33 in three studies (42.9%). Three studies 
reported diagnosis by clinical evaluation (4.9%).

Data source and spatial scale
Forty- one (67.2%) studies reported on data obtained 
from surveys and 20 (32.8%) studies used secondary 
data (online supplemental appendix table 1). All studies 
that used secondary data and reported using geoloca-
tion obtained from original publications reported at the 
subnational level (villages or communities), except one 
study11 that reported having household locations.

Analysis at the national level was conducted by 1 study 
(2.5%), subnational level by 10 studies (16.4%), commu-
nities/villages by 24 studies (39.3%) and at the household 
or individual level was reported by 26 studies (42.6%).

Study aims
We only reported study aims associated with a spatial 
approach; 30 studies (49.2%) aimed to describe the 
spatial distribution of LF, 21 (34.4%) to identify risk 
factors, 17 (27.9%) to identify spatial autocorrelation, 15 
(24.6%) to identify hotspots or high- risk areas, 9 (14.8%) 
to assess the impact of an intervention, 6 (9.8%) to 
demonstrate the application of a model or to compare 
outputs of different models and 5 (8.2%) to model trans-
mission or the odds of elimination while accounting for 
spatial dependence.

Spatial methods and outputs
Methods
Spatial techniques and tools are detailed in table 2. Thir-
ty- one studies (46.8%) used techniques that identified 
or measured spatial structure, 42 (64.5%) used statis-
tical modelling to examine the effect of explanatory risk 
factors on disease distribution and 6 (9.7%) used math-
ematical models to estimate disease prevalence, trans-
mission or environmental suitability. Twenty- five studies 
(41.0%) used more than one technique.

Intracluster correlation is an indicator of the degree 
of agreement between measurements (eg, infection 
status) within defined groups (eg, regions, communi-
ties or households).12 When the hierarchical level of the 
multilevel regression corresponds to the spatial levels of 
data aggregation, it reflects the spatial structure of the 
dataset and therefore can be used to assess spatial clus-
tering. Table 2 summarises the range of methods used 
in the studies of LF. The technique adopted was not 
described in four studies, although it was possible to 
observe that one study13 quantified spatial variation, two 
studies14 15 applied spatial models to estimate the prob-
ability of disease presence and one study16 described 
testing the model for spatial dependence using Moran’s 
Index and applied spatial models to estimate the proba-
bility of disease spread, but the method was unclear.

The association between study aims, the spatial method 
applied and the frequency in which each association 
occurred is summarised in table 3. Studies could report 
more than one aim and/or apply more than one tech-
nique. Studies that used spatial regression models to 
describe disease distribution were the most frequent, 
followed by studies that used global spatial dependence 
to investigate spatial autocorrelation.

Outputs
Thirty- eight studies (62.3%) reported a prediction 
output, most frequently predicted prevalence by location 
reported as a prevalence map (17 studies, 27.9%). LF 
occurrence was also predicted based on the probability 
of environmental suitability, and of seroprevalence above 
a threshold, reported in seven (11.5%) studies each.

Eight studies (13.1%) assessed the impact of interven-
tions and control programmes on disease distribution; 
four (50.0%) conducted in the African Region, two 
(25.0%) in the Western Pacific Region, one (12.5%) in 
the Region of Americas and one (12.5%) in the South- 
East Asian Region. Five studies (62.5%) investigated 
the impact of MDA on LF prevalence, and four studies 
(50.0%) assessed the odds of LF elimination by MDA and 
other interventions.

Five studies (8.2%) reported negative results for spatial 
dependence. Two studies17 18 examined but did not iden-
tify any spatial dependence in their dataset. One study19 
did not identify spatial autocorrelation, but identified 
weak spatial heterogeneity. Based on these results, the 
authors decided to incorporate spatial terms in the model 
to predict LF prevalence. In two studies, the presence of 
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spatial autocorrelation varied based on the adoption of 
different spatial scale20 (spatial dependence was present 
at a large scale but not at a small scale) and on the diag-
nostic test incorporated into the model21 (spatial depen-
dence was identified for antigen, but not for antibodies).

Twenty- two studies (36.1%) reported the occurrence 
of hotspots as an output; 16 studies (26.2%) identified 
hotspots and 6 (9.8%) predicted the location of hotspots. 
Among those studies, eight (13.1%) were conducted in 
the Western Pacific Region, five (8.2%) in the Region 
of the Americas, four (6.6%) in the African Region and 
four (6.6%) in the South- East Asian Region. Four (6.6%) 
studies were conducted after MDA rounds and inves-
tigated the impact of treatment on LF prevalence and 
distribution.

Six studies (9.8%) presented and discussed model perfor-
mance. Here, we focus on the results of comparison between 
spatial and non- spatial models. One study22 compared the 

results of spatial and non- spatial models using national data 
for malaria and LF, with spatial models performing better 
than non- spatial models. One study23 built and compared 
four models, including a spatial Bayesian geostatistical 
approach. The authors identified issues with the definition 
of neighbours and the application of spatial smoothing 
but highlighted that the comparison between models 
illustrated the importance of accounting for spatial auto-
correlation, and that the spatial model was more flexible 
for modelling spatially correlated diseases, such as LF. A 
Geographically Weighted Zero- Inflated Poisson Model 
(GW- ZIP) was developed in one study19 and compared with 
the results from a non- spatial ZIP model, finding similar 
results in both models, but statistically significant variables 
were different in each model and statistically significant 
variables from the spatial model were opposite to initial 
expectations, with health households life style, trash can 
and wastewater management increasing the risk of LF.

Table 2 Spatial methods used in spatial analysis of lymphatic filariasis (n=64)

Method N (%) References

Spatial dependence analysis 30 (49.2)

  Multilevel regression+ICC coefficient 4 (6.6) 12 21 41 42

  Global

   Variogram/Semi- variogram 11 (18.0) 4 12 20 23 30 34 43–48

   Moran’s Index 7 (11.5) 12 16 17 19 20 35 49 50*

   Others 5 (8.2) 18 51–54

  Local

   Getis Ord G local statistic 3 (4.9) 12 49 55

   Kulldorffs Spatial Scan Stats 3 (4.9) 12 28 56

   Others† 2 (3.3) 32 57

Smoothing and interpolation 10 (16.4)

  Kernel density estimation 3 (4.9) 33 57 58

  Kriging 6 (9.8) 31 44 46 48 59 60

Spatial statistical methods 31 (50.8)

  Conditional autorregressive models 2 (3.3) 30 43

  Model- based geostatistics 15 (24.6) 11 20 22 23 26 35 38 44 45 48 50 61–64

  Geographically weighted regression 1 (1.6) 19

  Machine learning‡ 10 (16.4) 25 27 34 36–38 40 49 65 66

  Other 8 (13.1) 28 39 67 68

Spatially explicit mathematical modelling 6 (9.8)

  Agent- based model 2 (3.3) 69 70

  APBCM 2 (3.3) 11 29

  SIR (transmission model) 1 (1.6) 63

  Data- driven Bayesian melding 1 (1.6) 71

*Purhadi et al19 used Moran’s Index to identify spatial dependence and Koenker- Basset to identify spatial heterogeneity.
†Rahman et al57 used local indicators of spatial association and Brandão et al32 used k- means.
‡MaxEnt was used in three studies, Eneanya et al37; Mwase et al66 and Slater and Michael36; boosted tree regression was used in two 
studies, Cano et al65 and Eneanya et al37; regression forest in two studies, Eneanya et al34 and Kwarteng et al40 and generalised additive 
model was used in three studies, Bisanzio et al49; Srividya et al20 and Kwarteng et al.40

APBCM, adaptive approximate Bayesian computational model; ICC, intracluster correlation; SIR, susceptible (S), infected (I), and recovered 
(R).
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Table 4 summarises the variables included in the statis-
tical models with spatial terms. Eighteen studies (29.5%) 
investigated the relationship between LF and explanatory 
variables using spatial models. Among those, 10 studies 
(55.6%) focused on risk- factor analysis, and 7 studies 
(38.9%) used explanatory variables to predict disease 
distribution, and reported the variables incorporated 
into the spatial model.

DISCUSSION
Our study showed that the use of spatial analysis in LF 
epidemiological studies has progressively increased in 
recent decades. The expanded use of spatial methods has 
contributed to a better understanding of disease burden 
and distribution and contributed to enhanced informed 
decision- making for elimination strategies. A wide range 
of spatial methods have been used by researchers, with 
specific methods applied to address different objectives. 
Our review provides a helpful framework to guide others 

working in this field regarding choice of spatial methods 
when addressing questions regarding prevalence, distri-
bution, hotspots, risk factors or odds of elimination.

Importantly, most studies included in this review 
demonstrated spatial dependence of LF occurrence, 
suggesting that spatial models may provide more accu-
rate estimates of disease distribution and association 
with determinants of infection.2 24 Additionally, the 
incorporation of spatial structure into complex mathe-
matical models and machine learning models provided 
important insights into the impact of MDA and the odds 
of disease elimination.

The uptake of spatial methods varied between LF- en-
demic regions. Southeast Asia is under- represented 
compared with the LF burden in region. Among all 
WHO regions, Southeast Asia presents the highest LF 
burden, with ~60% of cases between 2000 and 2018,25 yet 
only 20% of studies identified by our review was from this 
region. Spatial methods have been widely used for the 

Table 3 Heatmap of the frequency in which each spatial method was employed to address each aim and to produce outputs 
among the studies that reported the use of spatial methods to the study of LF

Total studies*

Spatial methods

Spatial dependence

Interpolation

Spatial 
statistical 
model

Spatial 
mathematical 
model

Total*

Global Local

29 5 10 32 5

Studies aims†

  Describe distribution 11 0 9 18 1 30

  Identify risk factors 8 0 3 15 0 21

  Identify autocorrelation 14 4 1 7 0 17

  Identify hotspots 11 4 2 6 0 15

  Assess the impact of an intervention 3 1 1 4 4 9

  Compare spatial models 3 0 0 4 2 6

  Model transmission/elimination 0 1 1 4 2 5

Study outputs†

  Identified dependence 24 4 5 16 0 30

  Identified risk factors 8 1 3 19 2 27

  Predicted prevalence 6 0 5 10 2 17

  Identified hotspots 11 5 1 7 0 16

  Mapped other‡ 5 0 2 8 0 10

  Predicted environmental suitability 1 0 0 6 0 7

  Predicted location of hotspots 4 0 1 4 0 6

  Predicted risk of transmission 0 1 2 2 1 5

  Assessed the impact of MDA 2 1 1 3 0 5

  Assessed the odds of elimination 1 0 0 1 3 4

▢ Frequently associated (≥20), ▢ 19–15, ▢ 14–10, ▢ 9–5, ▢ 4–1, ▢ not associated (0).
*Rows: total studies that reported each aim or output. Columns: total studies that reported each method.
†Some studies reported more than one aim or outputs.
‡Two studies mapped the standardised parasite density ratio,30 43 one study mapped the density of microfilaremia distribution58 and seven 
studies mapped the risk of LF occurrence (based on having a seromarker above a threshold).16 27 35 36 48 64 66

LF, lymphatic filariasis; MDA, mass drug administration.
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study of malaria,3 which may have promoted the use of 
spatial methods in Africa, where endemic areas for both 
diseases often overlap.26 27 Moreover, spatial methods 
might have greater value in low prevalence settings, 
when spatial heterogeneity of LF might intensify.18 28 29 
Even though spatial epidemiology can benefit areas of 
high or low prevalence,2 24 the analytical options that may 
provide cost- effective high- quality information in low 
prevalence areas are more limited, justifying the compu-
tational and technological demands of spatial methods. 
Regions that have made significant progress towards LF 
elimination, such as the Pacific Islands and the Americas7 
were over- represented in our review, frequently reporting 
techniques to identify hotspots of LF, especially in the 
post- MDA setting.

The spatial modelling studies included in this system-
atic review demonstrated that careful selection of vari-
ables and spatial scale are needed for the models to 
appropriately represent spatial relationships. Environ-
mental and sociodemographic factors incorporated into 
the models were initially chosen based on biological and 
historical plausibility.24 For LF, models focused primarily 
on gender (males),4 21 29 age (older groups),22 28 30 31 
socioeconomics (proxy of poverty),32 33 temperature,34–37 
humidity22 38 39 and altitude.22 34 36 37 However, the ability 
of these variables to predict LF occurrence depends 
on how variables were represented in the model (ie, 
temperature may be included as mean minimum 
temperature, annual mean temperature, day or night 
land surface temperature, etc), quality of the dataset 
available and spatial scale of inputs and outputs. Strength 

and direction of association between variables in models 
differed when data were analysed at different spatial 
scales.40 More detailed reports about the spatial data 
used (eg, spatial resolution, period encompassed), and 
the process of variable selection, are important to allow 
comparison and reproducibility of the model and to 
enable appropriate interpretation of results. This infor-
mation could benefit future researchers when consid-
ering the most suitable variables for their models, and 
the spatial scale relevant to their study.

The importance of transmission drivers may vary 
within the same community, between communities 
and among communities within areas at subnational, 
national, regional and global scales.34 It is important to 
understand the impact of this variation when planning 
public health interventions at different administrative 
levels. Studies that describe the global distribution of 
disease burden may benefit from broader analysis, for 
example, at the national level,25 despite the risk that fine- 
scale heterogeneity will be missed. Conversely, national 
or regional programmes that investigate areas of residual 
transmission would benefit from fine- scale data inputs at 
the household and/or individual levels to identify small 
areas to be targeted for action.30 38

Our systematic review has several limitations. First, 
we only identified a small number of LF studies consid-
ering the worldwide distribution of LF, the variety of 
natural environment and sociodemographic settings 
with multiple parasite and vectors species and the 
different stage of elimination programme for each 
country where LF is endemic. The countries that are 
represented in the literature are not representative 
of LF global burden distribution. This highlight the 
underutilisation of spatial epidemiological methods 
for LF in areas where they could potentially provide 
valuable insights into operational decision- making. 
Second, we found a wide range of spatial methods 
compared with the low number of papers included in 
the review and multiple analytical techniques within 
the same group of methods, possibly because spatial 
analytics are still being explored for LF. Third, most 
studies reported the methods employed, but some 
provided only an incomplete description of how the 
methods were used or did not provided specific details 
about the spatial data. Inconsistent and incomplete 
reporting of methods limited the ability of this system-
atic review to make standard recommendations for 
spatial analysis for LF. Lastly, only studies published in 
English were included.

The strengths of this systematic review include the 
exhaustive and transparent review search strategy 
in accordance with the current methodological 
guidelines, input from experts and included studies 
that provided a comprehensive depiction of spatial 
methods used to study LF distribution and elimina-
tion efforts. Additionally, we explored the benefits of 
employing a broad range of spatial methods in the 
study of LF, especially on low prevalence settings.

Table 4 Summary of variables included in the lymphatic 
filariasis statistical models with spatial terms

Explanatory variable References

Sociodemographic and behaviour

  Age 22 28

  Male 49

  Living or studying in a specific 
location 23 68

  Population density 36 40 62 65

  Household members 49

  Proxy of lower economic activity 37 38 40 66 68

  Sewage treatment and waste 
management 15 19

  Distance to an index case 28

  Treatment 28

  Use of bed nets 49

Environmental

  Temperature 34–37 39 62

  Land cover 22 35

  Water 22 38 39 62

  Altitude 22 23 36 37 40 62
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In conclusion, our study showed that for LF, spatial 
analyses and models have provided valuable informa-
tion and evidence to better define endemic zones, 
provide more precise estimates of population at risk 
and enable the stratification of areas by probability 
of transmission and infection. There are still needs 
for better quality of remote sensing data, especially 
in small or remote areas (eg, Pacific Islands), better 
consensus regarding definition of spatial scale related 
to population at risk and areas of residual transmis-
sion. As countries approach elimination, and LF prev-
alence continues to decline, identifying hotspots will 
require more robust surveillance strategies and analyt-
ical methodologies. The use of metrics that accurately 
describe changes in transmission intensity across 
space and time will be important for the design and 
implementation of evidence- based control and elim-
ination strategies. The spatial methods identified by 
this study are also applicable for elimination of other 
globally important diseases.
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